Some New Results on Macaulay Posets
نویسندگان
چکیده
Macaulay posets are posets for which there is an analogue of the classical KruskalKatona theorem for finite sets. These posets are of great importance in many branches of combinatorics and have numerous applications. We survey mostly new and also some old results on Macaulay posets. Emphasis is also put on construction of extremal ideals in Macaulay posets.
منابع مشابه
A new approach to Macaulay posets
We develop a new approach for establishing the Macaulayness of posets representable as cartesian powers of other posets. This approach is based on a problem of constructing an ideal of maximum rank in a poset. Using the relations between the maximum rank ideal problem and the edge-isoperimetric problem on graphs we demonstrate an application of our approach to specification of all posets with a...
متن کاملDouble homotopy Cohen-Macaulayness for the poset of injective words and the classical NC-partition lattice
In this paper we study topological properties of the poset of injective words and the lattice of classical non-crossing partitions. Specifically, it is shown that after the removal of the bottom and top elements (if existent) these posets are doubly Cohen-Macaulay. This extends the well-known result that those posets are shellable. Both results rely on a new poset fiber theorem, for doubly homo...
متن کاملOn Sequentially Cohen-macaulay Complexes and Posets
The classes of sequentially Cohen-Macaulay and sequentially homotopy Cohen-Macaulay complexes and posets are studied. First, some different versions of the definitions are discussed and the homotopy type is determined. Second, it is shown how various constructions, such as join, product and rank-selection preserve these properties. Third, a characterization of sequential Cohen-Macaulayness for ...
متن کاملOn the Cohen-Macaulay connectivity of supersolvable lattices and the homotopy type of posets
It is a well known fact that a supersolvable lattice is ELoshellable. Hence a supersolvable lattice (resp., its Stanley-Reisner ring) is Cohen-Macaulay. We prove that if L is a supersolvable lattice such that all intervals have non-vanishing Mt~bius number, then for an arbitrary element x e L the poser L {x} is also Cohen-Macaulay. Posets with this property are called 2-Cohen-Macaulay posets. I...
متن کاملWhitney Homology of Semipure Shellable Posets
We generalize results of Calderbank, Hanlon and Robinson on the representation of the symmetric group on the homology of posets of partitions with restricted block size. Calderbank, Hanlon and Robinson consider the cases of block sizes that are congruent to 0 mod d and 1 mod d for fixed d . We derive a general formula for the representation of the symmetric group on the homology of posets of pa...
متن کامل